Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(12): 4458-4465, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516072

RESUMO

The palladium-mediated uncaging reaction of allene substrates remains a promising yet often overlooked strategy in the realm of bioorthogonal chemistry. This method exhibits high kinetic rates, rivaling those of the widely employed allylic and propargylic protecting groups. In this study, we investigate into the mechanistic aspects of the C-O bond-cleavage deallenylation reaction, examining how chloride levels influence the kinetics when triggered by Pd(ii) complexes. Focusing on the deallenylation of 1,2-allenyl protected 4-methylumbelliferone promoted by Allyl2Pd2Cl2, our findings reveal that reaction rates are higher in environments with lower chloride concentrations, mirroring intracellular conditions, compared to elevated chloride concentrations typical of extracellular conditions. Through kinetic and spectroscopic experiments, combined with DFT calculations, we uncover a detailed mechanism that identifies AllylPd(H2O)2 as the predominant active species. These insights provide the basis for the design of π-allylpalladium catalysts suited for selective uncaging within specific cellular environments, potentially enhancing targeted therapeutic applications.

2.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459071

RESUMO

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Assuntos
Doenças Priônicas , Príons , Animais , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mamíferos/metabolismo , Dobramento de Proteína
3.
J Am Chem Soc ; 146(3): 2054-2061, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194293

RESUMO

Natural proteins are highly optimized for function but are often difficult to produce at a scale suitable for biotechnological applications due to poor expression in heterologous systems, limited solubility, and sensitivity to temperature. Thus, a general method that improves the physical properties of native proteins while maintaining function could have wide utility for protein-based technologies. Here, we show that the deep neural network ProteinMPNN, together with evolutionary and structural information, provides a route to increasing protein expression, stability, and function. For both myoglobin and tobacco etch virus (TEV) protease, we generated designs with improved expression, elevated melting temperatures, and improved function. For TEV protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically important proteins.


Assuntos
Endopeptidases , Temperatura , Endopeptidases/metabolismo , Proteínas Recombinantes de Fusão
4.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076856

RESUMO

The Gram-negative selective antibiotic darobactin A has attracted interest owing to its intriguing fused bicyclic structure and unique mode of action. Biosynthetic studies have revealed that darobactin is a ribosomally synthesized and post-translationally modified peptide (RiPP). During maturation, the darobactin precursor peptide (DarA) is modified by a radical S-adenosyl methionine (rSAM)-dependent enzyme (DarE) to contain ether and C-C crosslinks. In this work, we describe the enzymatic tolerance of DarE using a panel of DarA variants, revealing that DarE can install the ether and C-C crosslinks independently and in different locations on DarA. These efforts produced 57 darobactin variants, 50 of which were enzymatically modified. Several new variants with fused bicyclic structures were characterized, including darobactin W3Y, which replaces tryptophan with tyrosine at the twice-modified central position, and darobactin K5F, which displays a fused diether ring pattern. Three additional darobactin variants contained fused diether macrocycles, leading us to investigate the origin of ether versus C-C crosslink formation. Computational analyses found that more stable and long-lived Cß radicals found on aromatic amino acids correlated with ether formation. Further, molecular docking and calculated transition state structures provide support for the different indole connectivity observed for ether (Trp-C7) and C-C (Trp-C6) crosslink formation. We also provide experimental evidence for a ß-oxotryptophan modification, a proposed intermediate during ether crosslink formation. Finally, mutational analysis of the DarA leader region and protein structural predictions identified which residues were dispensable for processing and others that govern substrate engagement by DarE. Our work informs on darobactin scaffold engineering and sheds additional light on the underlying principles of rSAM catalysis.

5.
Org Lett ; 25(41): 7481-7485, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815231

RESUMO

2-Halo-3-tosyl-oxanorbornadienes are able to accept two thiol molecules through an initial nucleophilic substitution, giving isolable oxabicyclic thiovinyl sulfones that, subsequently, can react with a second thiol molecule via thio-Michael addition. The resulting oxanorbornenic thioketals undergo retro-Diels-Alder (rDA) fragmentation to release a furan derivative and a ketene S,S-acetal. The substitution pattern of the oxanorbornadienic skeleton influences the rate of the rDA through electronic and steric factors examined by quantum mechanical calculations.

6.
Nat Catal ; 6(10): 927-938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881531

RESUMO

Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants.

7.
Angew Chem Int Ed Engl ; 62(44): e202311186, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682023

RESUMO

Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided. This multicomponent process provides access to a new chemical space of pyrazole amide derivatives and offers a tool for peptide modification and stapling.

8.
Chemphyschem ; 24(21): e202200906, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37545345

RESUMO

Poly-aromatic systems that contain quinodimethyl (QDM) units are appealing for several photonic and spintronic applications owing to the unique electronic structure, aromaticity, and spin state(s) of the QDM ring. Herein, we report the synthesis and characterization of novel QDM-based chromophores 1-3, which exhibit unique photo-excited behavior and aromaticity. Extending the aromatic core with a biphenyl/phenanthryl- and a pyrrolo-fragment led to reducing the optoelectronic bandgap and modulating the photophysics QDM 1-3. Yet, QDM 2 and 3 suffer from "aromaticity imbalance" and become relatively unstable compared to the parent compound QDM 1. Further assessment of local aromaticity using computational tools revealed that the pseudo-quinoidal ring B is the main driving force allowing to easily populate the excited triplet state of these chromophores. The present study provides complementary guidelines for designing novel non-classical poly-aromatic systems.

9.
Chemistry ; 29(42): e202301869, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37350118

RESUMO

Invited for the cover of this issue are the groups of Gonzalo Jiménez-Osés and Fernando López-Gallego at CIC bioGUNE and CIC biomaGUNE, respectively. The image depicts the substrate scope of an engineered acyl transferases for the synthesis of statin derivatives. Read the full text of the article at 10.1002/chem.202300911.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Aciltransferases
10.
Org Lett ; 25(17): 3001-3006, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37125666

RESUMO

The synthesis of polysubstituted spirocyclopropyl oxindoles using a series of rare-earth metal (REM) salts is reported. REMs, in particular Sc(OTf)3, allowed access to the target compounds by a multicomponent reaction with high diastereoselectivity (≤94:6:0:0). Density functional theory calculations on the model reaction are consistent with the observed selectivity and revealed that the special coordinating capabilities and the oxophilicity of the metal are key factors in inducing the formation of one main diastereoisomer.

11.
Chemistry ; 29(42): e202300911, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37139626

RESUMO

This study identifies new acyl donors for manufacturing statin analogues through the acylation of monacolin J acid by the laboratory evolved acyltransferase LovD9. Vinyl and p-nitrophenyl esters have emerged as alternate substrates for LovD9-catalyzed acylation. While vinyl esters can reach product yields as high as the ones obtained by α-dimethyl butyryl-S-methyl-3-mercaptopropionate (DMB-SMMP), the thioester for which LovD9 was evolved, p-nitrophenyl esters display a reactivity even higher than DMB-SMMP for the first acylation step yet the acylation product yield is lower. The reaction mechanisms were elucidated through quantum mechanics (QM) calculations.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Aciltransferases/metabolismo , Biocatálise , Acilação , Ésteres , Especificidade por Substrato
12.
J Am Chem Soc ; 145(19): 10790-10799, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133984

RESUMO

The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated ß-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of ß-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.


Assuntos
Naftoquinonas , Neoplasias , Pró-Fármacos , Animais , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Paládio/química , Peixe-Zebra
13.
ACS Omega ; 8(19): 16883-16895, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214724

RESUMO

Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.

14.
Org Lett ; 25(9): 1431-1435, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36849130

RESUMO

Nucleophilic ring opening of cyclic sulfamidates derived from amino acids is a common strategy for the synthesis of lanthionine derivatives. In this work, we report the regio-, chemo-, and stereoselective intramolecular S-alkylation of a cysteine residue with N-sulfonyl sulfamidates for the synthesis of cyclic lanthionine-containing peptides. The strategy involves the solid-phase synthesis of sulfamidate-containing peptides followed by late-stage intramolecular cyclization. This protocol allowed for the synthesis of four full-length cytolysin S (CylLS″) analogues, two α-peptides and two hybrid α/ß-peptides. Their conformational preferences and biological activities were assessed and compared with those of wild-type CylLS″.


Assuntos
Alanina , Aminoácidos , Alanina/química , Citotoxinas , Peptídeos/química , Peptídeos Cíclicos
15.
J Chem Inf Model ; 63(3): 898-909, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36647575

RESUMO

Thermostability enhancement is a fundamental aspect of protein engineering as a biocatalyst's half-life is key for its industrial and biotechnological application, particularly at high temperatures and under harsh conditions. Thermostability changes upon mutation originate from modifications of the free energy of unfolding (ΔGu), making thermostabilization extremely challenging to predict with computational methods. In this contribution, we combine global conformational sampling with energy prediction using AlphaFold and Rosetta to develop a new computational protocol for the quantitative prediction of thermostability changes upon laboratory evolution of acyltransferase LovD and lipase LipA. We highlight how using an ensemble of protein conformations rather than a single three-dimensional model is mandatory for accurate thermostability predictions. By comparing our approaches with existing ones, we show that ensembles based on AlphaFold models provide more accurate and robust calculated thermostability trends than ensembles based solely on crystallographic structures as the latter introduce a strong distortion (scaffold bias) in computed thermostabilities. Eliminating this bias is critical for computer-guided enzyme design and evaluating the effect of multiple mutations on protein stability.


Assuntos
Engenharia de Proteínas , Estabilidade Enzimática , Mutação , Estabilidade Proteica , Conformação Proteica
16.
Angew Chem Int Ed Engl ; 62(18): e202214510, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602092

RESUMO

Iridium-catalyzed borylations of aromatic C-H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3 -substituted aryl ring of the bipyridine ligand.

17.
JACS Au ; 3(1): 204-215, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711084

RESUMO

Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.

18.
Angew Chem Int Ed Engl ; 62(4): e202208936, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36533936

RESUMO

Trifluoromethyl-substituted cyclopropanes (CF3 -CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis of trans-CF3 -CPAs, stereoselective production of corresponding cis-diastereomers remains a formidable challenge. We report a biocatalyst for diastereo- and enantio-selective synthesis of cis-CF3 -CPAs with activity on a variety of alkenes. We found that an engineered protoglobin from Aeropyrnum pernix (ApePgb) can catalyze this unusual reaction at preparative scale with low-to-excellent yield (6-55 %) and enantioselectivity (17-99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron-carbenoid and substrates to adopt a pro-cis near-attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3 -CPAs for drug discovery.


Assuntos
Ciclopropanos , Metano , Ciclopropanos/química , Estereoisomerismo , Metano/química , Catálise
19.
Chemistry ; 29(9): e202202913, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36377879

RESUMO

Peptides containing variations of the ß-amyloid hydrophobic core and five-membered sulfamidates derived from ß-amino acid α-methylisoserine have been synthesized and fully characterized in the gas phase, solid state and in aqueous solution by a combination of experimental and computational techniques. The cyclic sulfamidate group effectively locks the secondary structure at the N-terminus of such hybrid peptides imposing a conformational restriction and stabilizing non-extended structures. This conformational bias, which is maintained in the gas phase, solid state and aqueous solution, is shown to be resistant to structure templating through assays of in vitro ß-amyloid aggregation, acting as ß-sheet breaker peptides with moderate activity.


Assuntos
Aminoácidos , Peptídeos beta-Amiloides , Conformação Proteica em Folha beta , Peptídeos beta-Amiloides/química , Estrutura Secundária de Proteína
20.
Chemistry ; 29(5): e202202208, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36343278

RESUMO

Fluorine (19 F) incorporation into glycan-binding proteins (lectins) has been achieved and exploited to monitor the binding to carbohydrate ligands by nuclear magnetic resonance (NMR) spectroscopy. Galectins are a family of lectins that bind carbohydrates, generally with weak affinities, through a combination of intermolecular interactions including a key CH-π stacking involving a conserved tryptophan residue. Herein, Galectin-3 (Gal3) and Galectin-8 (Gal8) with one and two carbohydrate recognition domains (CRDs), respectively, were selected. Gal3 contains one Trp, whereas Gal8 contains three, one at each binding site and a third one not involved in sugar binding; these were substituted by the corresponding F-Trp analogues. The presence of fluorine did not significantly modify the affinity for glycan binding, which was in slow exchange on the 19 F NMR chemical-shift timescale, even for weak ligands, and allowed binding events taking place at two different binding sites within the same lectin to be individualized.


Assuntos
Flúor , Galectinas , Galectinas/metabolismo , Carboidratos , Polissacarídeos/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Galectina 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...